
Migrating 100+ Postgres
databases to the Cloud

Nelson Calero
Principal Consultant
Pythian

Luke Davies
Principal Consultant
Pythian

PGConf.EU 2025
October 2124, Riga, Latvia

 Pythian Services Inc. | www.pythian.com

Agenda

1. Project description

2. Migration options

3. How we did it

4. Problems solved

5. Lessons learned

6. Appendix - for reference

 Pythian Services Inc. | www.pythian.com

Nelson Calero
Pythian - Principal Consultant
● 25+ years Database experience
● Oracle ACE Director
● Community Volunteer - LAOUC / UYOUG leader
● Montevideo, Uruguay

LinkedIn: https://www.linkedin.com/in/ncalero
Twitter / X @ncalerouy

Luke Davies
Pythian - Principal Consultant
● 30+ years Database experience
● Chelmsford, UK

LinkedIn: https://www.linkedin.com/in/lukedavies

 Pythian Services Inc. | www.pythian.com

27
Years in Business

400
Experts across every Data Domain & Technology

 350
Global Customers

 Pythian Services Inc. | www.pythian.com

The project

 Pythian Services Inc. | www.pythian.com

Problem description - initial information

● PostgreSQL 9.6 instances running on VMs

● 10 servers, 100+ databases

● Several multi-TB databases

● Using inheritance, PostGIS, and special data types

● Looking to migrate to a Cloud managed services with minimal downtime (GCP)

● Already evaluated replication tools and found problems: Google DMS, Striims

● Many tables not having PK

 Pythian Services Inc. | www.pythian.com

Problem description - initial information + discovered

● PostgreSQL 9.6 instances running on VMs

● 10 servers, 100+ databases

● Several multi-TB databases

● Using inheritance, PostGIS, and special data types

● Looking to migrate to a Cloud managed services with minimal downtime (GCP)

● Already evaluated replication tools and found problems: Google DMS, Striims

● Many tables not having PK

Discovered a lot of customizations

● Problems with replication tools tested were not well documented
● Test and Dev environments does not have the same data sizes as production
● Application to database mappings is not well documented
● 3 months deadline to complete the migration (platform and financial constraints)
● Tables without PK are insert only
● Source and target DBs on different networks VPCs, no direct connectivity
● Use private IPs for DBs - apps will connect using Private Service Connect (PSC)
● Looking to implement some changes in the target, as part of the migration

○ Use GCP Identity and Access Management (IAM) authentication
○ Regroup databases to align with application usage
○ Move from inheritance to declarative partitioning
○ Not all schemas will be migrated
○ Not all data from large tables is needed (some will be archived)

 Pythian Services Inc. | www.pythian.com

Project timeline

Discovery

POC

Capacity
Planning

Migration
Automation

Environment
Provisioning

App
testing

Cutovers
(N waves)

Migrations
(100 DBs)

Next environment:
- Infra provisioning
- Migrations
- Cutovers
- App testing
- Cost optimization

Cost
optimization

 Pythian Services Inc. | www.pythian.com

Project timeline

Discovery

POC

Capacity
Planning

Migration
Automation

Environment
Provisioning

App
testing

Cutovers
(N waves)

Migrations
(100 DBs)

Next environment:
- Infra provisioning
- Migrations
- Cutovers
- App testing
- Cost optimization

Cost
optimization

1

2 3

4

 Pythian Services Inc. | www.pythian.com

Target platform (including old DBs for migration)

Admins

EndpointCloud SQL 1
DB1
DB20
…

PostgreSQL VM1
DB1
DB2
…

PostgreSQL VM2
DB20
DB21
…

PostgreSQL VM9
DB90
DB91
…

DB v9 VPC Cloud SQL VPC

 PSA
(pglogical)

APP VPC

APP VM1

APP VM NN

PSC

Endpoint

Endpoint

Cloud SQL 2
DB5
DB31
…

Cloud SQL 7
DB4
DB50
…

APP Clients

APP Clients

… …

…

 Pythian Services Inc. | www.pythian.com

Migration
options

 Pythian Services Inc. | www.pythian.com

Migration options explored

● Google DMS - https://cloud.google.com/database-migration
○ No extra cost for homogenous migrations to Cloud SQL
○ Features improved since the customer’s POC, but only possible to migrate all DBs in an

instance at that time (July/2024)
○ No documented problems with inheritance, PostGIS or data types
○ No time to evaluate with all DBs to decide (based on customer past experience)

● Third-party replication tools
○ License cost implications
○ No documented problems with inheritance, PostGIS or data types
○ Customer aversion given the experience with one of them, and limited time to test them

● Pglogical extension - https://github.com/2ndQuadrant/pglogical
○ Simple POCs didn’t show any problems
○ Need to develop automation to use it at scale

https://cloud.google.com/database-migration
https://github.com/2ndQuadrant/pglogical

 Pythian Services Inc. | www.pythian.com

Migration options explored - pglogical extension

DB v9 VPC
Cloud SQL VPC

PostgreSQL VM1

DB1 - Pub1

DB2 - Pub2

DBn - Pubn

…

PostgreSQL VM2

DB20 - Pub20

DB21 - Pub21

DB2n - Pub2n

…

Cloud SQL 1

DB1 - Sub1

DB20 - Sub20

DB X - SubX

…

Cloud SQL 2

DB5 - Sub5

DB31 - Sub31

DBY - SubY

…

 PSA
(pglogical)

How
● One Publisher per source DB
● One Subscriber per target DB
● Connection initiated by target
● Mix of data flows between Clusters

Setup
● PSA enabled on Cloud SQL VPC
● pg_hba.conf changes on source
● PostgreSQL parameters changes in

both source and target for pglogical

 Pythian Services Inc. | www.pythian.com

How we did it

 Pythian Services Inc. | www.pythian.com

Project decisions

● Initial discovery to document all source DBs complexities
○ version, extensions, data types, sizes

● POC of the entire migration using pglogical for three representative DBs
○ size, features (PostGis, inheritance, data types), and app complexity

● Capacity planning to size the target clusters (and validate the initial proposed mapping)

● Automate as much as possible to minimize manual interventions and errors
○ Terraform to provision - VPC, IAM, Cloud SQL instances, roles and IAM attachments
○ A migration framework using open source tools - not reinventing the wheel

■ Used for databases creation and data migration
○ Cutover scripts - manual intervention was required in coordination with app team

● No big-bang migration, to reduce application risks
○ several migration waves of ~20 DB each, in a two hours migration window

 Pythian Services Inc. | www.pythian.com

Project decisions

● Initial discovery to document all source DBs complexities
○ version, extensions, data types, sizes

● POC of the entire migration using pglogical for three representative DBs
○ size, features (PostGis, inheritance, data types), and app complexity

● Capacity planning to size the target clusters (and validate the initial proposed mapping)

● Automate as much as possible to minimize manual interventions and errors
○ Terraform to provision - VPC, IAM, Cloud SQL instances, roles and IAM attachments
○ A migration framework using open source tools - not reinventing the wheel

■ Used for databases creation and data migration
○ Cutover scripts - manual intervention was required in coordination with app team

● No big-bang migration, to reduce application risks
○ several migration waves of ~20 DB each, in a two hours migration window

 Pythian Services Inc. | www.pythian.com

pglogical extension POC

Few issues found
● Slow initial data copy for large tables (+20 hours for a 80Gb table)
● Even slower when having several indexes, or large toast
● Ownership and grants errors

○ No superuser allowed in GCP - cloudsqlsuperuser role instead (but not the same)
https://cloud.google.com/sql/docs/postgres/users

Solutions:
● Not a problem if WAL file retained on source (per replication slot) is not big

○ It was our case, even with heavy concurrency we saw few GB in 24 hours
● Speeding up subscription initial data copy:

○ Before starting subscriptions, drop non PK indexes on large tables
○ Recreate indexes after data copy - parameters tweaked (parallelism & memory)
○ GIST indexes took hours for large tables (+100GB), no parallel and/or online options
○ Initial data copy + indexes creation reduced to 8 hours in total from 32 hours.

● Tested dump/restore for the initial copy - complex and not safe with concurrent sessions

https://cloud.google.com/sql/docs/postgres/users

 Pythian Services Inc. | www.pythian.com

Capacity planning
Extracting PostgreSQL metrics per database

● Evaluated pgcluu - https://github.com/darold/pgcluu
○ Simple and nice reports to explore metrics captured, but grouped by cluster

● Implemented crontab script gathering stats per database
○ Hourly snapshots from pg_stats_database
○ Minutely snapshots of session state from pg_stats_activity

● track_io_timing parameter was disabled in all production clusters (default)
○ If enabled, block_read/write_time stats are captured
○ performance overhead (not tested, as per docs)

Analysis of metrics captured
● Imported data into a local PostgreSQL DB - db_stats and connection_stats tables
● Created view to get delta values for stats - db_stats_snap_v
● Created table with DB mappings to explore target instances - sql_instances
● Created an XLS and charts using pivot tables (mainly commits, reads and hits delta values)

https://github.com/darold/pgcluu

 Pythian Services Inc. | www.pythian.com

Migration automation

Design decisions:
● Open source tools - bash and YAML configuration files
● Parallel database migrations
● Resume capabilities
● Summary and detailed Logging
● Cutover process in waves

Configuration files:
● YAML file for migration steps
● YAML file for databases to process, including relevant content

○ source and target instances, schemas, data to discard, wave group, etc.

Main migration script in bash
● Reading configuration and calling scripts needed on each step

 Pythian Services Inc. | www.pythian.com

Migration automation - Overview

 Pythian Services Inc. | www.pythian.com

Migration automation - Relevant steps
Several steps involved, pglogical being one of them

● Target instance creation (terraform)
● Target IAM users attachment (gcloud commands)
● Schema creation (pg_dump/restore)

○ Ownerships and grants adjustment (sed on the export file)
● Pglogical installation on source and target
● Pglogical publisher configuration on source
● Pglogical subscriber configuration on target

○ Drop indexes for large tables
○ Generate statements to recreate them

● Monitor initial data copy, continue only after it completes
● Execute index creation script (if needed)
● Schema and data verification

○ Count rows for small tables
○ Hash over all columns for a sample rows - all tables

● Vacuum Analyze

 Pythian Services Inc. | www.pythian.com

Migration automation - Relevant steps
Several steps involved, pglogical being one of them

● Target instance creation (terraform)
● Target IAM users attachment (gcloud commands)
● Schema creation (pg_dump/restore)

○ Ownerships and grants adjustment (sed on the export file)
● Pglogical installation on source and target
● Pglogical publisher configuration on source
● Pglogical subscriber configuration on target

○ Drop indexes for large tables
○ Generate statements to recreate them

● Monitor initial data copy, continue only after it completes
● Execute index creation script (if needed)
● Schema and data verification

○ Count rows for small tables
○ Hash over all columns for a sample rows - all tables

● Vacuum Analyze

details in appendix

 Pythian Services Inc. | www.pythian.com

Migration automation - Sample execution
$ bin/migrate.sh -v -c migrate_prod -t db-target2 -d db5
MAIN: Configuration file set to /migra/config/migrate_prod.yaml
MAIN: Database Target Server set to db-source1
MAIN: Database Name set to db5
MAIN: Getting servers ...
MAIN: Processing Server db-source1
MAIN: Getting databases ...
MAIN: Processing Server db-source3
MAIN: Getting databases ...
MAIN: Processing Database db-source3 -> db5
SetGlobals: ReplicaUser set to app_replica
SetGlobals: PostgresUser set to ncalero
SetGlobals: TotalParallel set to 4
SetGlobals: URLBase set to prod.mydb.com
SetGlobals: SuperUser set to dba
SetGlobals: OwnerUser set to db_owner
SetGlobals: Variable ScriptBaseDir unset. Defaulting to /migra
SetGlobals: ScriptBaseDir set to /migra
SetGlobals: Variable ScriptBinDir unset. Defaulting to /migra/bin
SetGlobals: ScriptBinDir set to /migra/bin
SetGlobals: Variable ScriptSQLDir unset. Defaulting to /migra/sql
SetGlobals: ScriptSQLDir set to /migra/sql
SetGlobals: Variable ScriptSQLgenDir unset. Defaulting to /migra/gensql
SetGlobals: ScriptSQLgenDir set to /migra/gensql
MAIN: Run Migrate job for database db-source3 -> db5 set off with PID 1878913
RunMigrate: Migrating database db-source3 -> db5 to target db-target2 using pglogical
...

 Pythian Services Inc. | www.pythian.com

Migration automation - Sample execution
$ bin/migrate.sh -v -c migrate_prod -t db-target2 -d db5
MAIN: Configuration file set to /migra/config/migrate_prod.yaml
MAIN: Database Target Server set to db-source1
MAIN: Database Name set to db5
MAIN: Getting servers ...
MAIN: Processing Server db-source1
MAIN: Getting databases ...
MAIN: Processing Server db-source3
MAIN: Getting databases ...
MAIN: Processing Database db-source3 -> db5
SetGlobals: ReplicaUser set to app_replica
SetGlobals: PostgresUser set to ncalero
SetGlobals: TotalParallel set to 4
SetGlobals: URLBase set to prod.mydb.com
SetGlobals: SuperUser set to dba
SetGlobals: OwnerUser set to db_owner
SetGlobals: Variable ScriptBaseDir unset. Defaulting to /migra
SetGlobals: ScriptBaseDir set to /migra
SetGlobals: Variable ScriptBinDir unset. Defaulting to /migra/bin
SetGlobals: ScriptBinDir set to /migra/bin
SetGlobals: Variable ScriptSQLDir unset. Defaulting to /migra/sql
SetGlobals: ScriptSQLDir set to /migra/sql
SetGlobals: Variable ScriptSQLgenDir unset. Defaulting to /migra/gensql
SetGlobals: ScriptSQLgenDir set to /migra/gensql
MAIN: Run Migrate job for database db-source3 -> db5 set off with PID 1878913
RunMigrate: Migrating database db-source3 -> db5 to target db-target2 using pglogical
...

...
RunMigrate: Migrating database db-source3 -> db5 to target db-target2 using pglogical
RunMigrate: Database db-source3 -> db5 starting from stage 60
MAIN: Processing Server db-source3
MAIN: Getting databases ...
RunStep: Running migration stage 70 for Database db-source3 -> db5
MAIN: Processing Server db-source4
MAIN: Getting databases ...
MAIN: Processing Server db-source5
MAIN: Getting databases ...
RunStep: Database db-source3 -> db5 running stage 70 -> Fix up Database Object MetaData Dump
RunStep: Database db-source3 -> db5 running script -> /migra/bin/fix_pgdump.sh -l
/migra/logs/migrate_db5_db5_250709173710.log -h db-source3.prod.mydb.com -d db5 -s 10.100.0.11 db_owner
...

 Pythian Services Inc. | www.pythian.com

Migration automation - Sample execution
$ bin/migrate.sh -v -c migrate_prod -t db-target2 -d db5
MAIN: Configuration file set to /migra/config/migrate_prod.yaml
MAIN: Database Target Server set to db-source1
MAIN: Database Name set to db5
MAIN: Getting servers ...
MAIN: Processing Server db-source1
MAIN: Getting databases ...
MAIN: Processing Server db-source3
MAIN: Getting databases ...
MAIN: Processing Database db-source3 -> db5
SetGlobals: ReplicaUser set to app_replica
SetGlobals: PostgresUser set to ncalero
SetGlobals: TotalParallel set to 4
SetGlobals: URLBase set to prod.mydb.com
SetGlobals: SuperUser set to dba
SetGlobals: OwnerUser set to db_owner
SetGlobals: Variable ScriptBaseDir unset. Defaulting to /migra
SetGlobals: ScriptBaseDir set to /migra
SetGlobals: Variable ScriptBinDir unset. Defaulting to /migra/bin
SetGlobals: ScriptBinDir set to /migra/bin
SetGlobals: Variable ScriptSQLDir unset. Defaulting to /migra/sql
SetGlobals: ScriptSQLDir set to /migra/sql
SetGlobals: Variable ScriptSQLgenDir unset. Defaulting to /migra/gensql
SetGlobals: ScriptSQLgenDir set to /migra/gensql
MAIN: Run Migrate job for database db-source3 -> db5 set off with PID 1878913
RunMigrate: Migrating database db-source3 -> db5 to target db-target2 using pglogical
...

...
RunMigrate: Migrating database db-source3 -> db5 to target db-target2 using pglogical
RunMigrate: Database db-source3 -> db5 starting from stage 60
MAIN: Processing Server db-source3
MAIN: Getting databases ...
RunStep: Running migration stage 70 for Database db-source3 -> db5
MAIN: Processing Server db-source4
MAIN: Getting databases ...
MAIN: Processing Server db-source5
MAIN: Getting databases ...
RunStep: Database db-source3 -> db5 running stage 70 -> Fix up Database Object MetaData Dump
RunStep: Database db-source3 -> db5 running script -> /migra/bin/fix_pgdump.sh -l
/migra/logs/migrate_db5_db5_250709173710.log -h db-source3.prod.mydb.com -d db5 -s 10.100.0.11 db_owner
...

$ bin/status.sh -w w4
Filters: Target= Wave=w4
General info Replica (target) Publisher (source)
Database Size GB Method Stage Wave Completed Con/Run Rep Status Con/Run Pub Lag Source Target
-------- ------- ------ ----- ---- --------- ------- ---------- ------- ------- ----------- -----------
db1 312.00 pglogical 115 w4 true 2/2 good 2/2 good db-source1 db-target1
db67 1102.00 pglogical 105 w4 false 2/1 bad 1/1 good db-source1 db-target1
db5 3464.00 pglogical 105 w4 false 2/0 Copying 2/0 bad db-source3 db-target2
db11 7.02 pglogical 115 w4 true 1/1 good 1/1 good/Lag(1) db-source2 db-target1
db24 95.00 pglogical 115 w4 true 2/2 good 2/2 good db-source2 db-target3
db32 234.00 pglogical 115 w4 true 2/2 good 2/2 good/Lag(1) db-source2 db-target3
db18 278.00 pglogical 115 w4 true 2/2 good 2/2 good/Lag(2) db-source4 db-target3
db41 271.00 pglogical 115 w4 true 2/2 good 2/2 good db-source4 db-target3
db89 1.84 pglogical 115 w4 true 2/2 good 2/2 good db-source4 db-target4
db52 0.01 pglogical 115 w4 true 1/1 good 1/1 good db-source5 db-target4
db9 5.18 pglogical 115 w4 true 2/2 good 2/2 good/Lag(2) db-source5 db-target1
----- ------- ------- --------- ------- ------- -------
Total 5770.05 11 9 20/17 9 19/17

 Pythian Services Inc. | www.pythian.com

Migration automation - Cutover

● Pre-cutover validations (shell script - day before cutover)
○ Replication status (primary and replica)
○ Replication slots details (primary)
○ Publishers and subscribers' details
○ WAL directory files and size in primary
○ Table Statistics update and status (using analyze)
○ Accounts attached to the target server(s)
○ Owners of database objects

● Cutover steps
○ Show database connections (source and target)
○ Show RO and RW role grants for SA accounts (target)
○ Application switchover
○ Update sequence values to match source values (target)
○ Grant RW roles to SA accounts (target)

● Post-cutover validations (days after cutover)
○ Show database connections (source and target)
○ Remove replication configuration (subscribers and publishers)

 Pythian Services Inc. | www.pythian.com

Problems faced
(and solved)

 Pythian Services Inc. | www.pythian.com

Problems solved

● pg_dump: Reusability
● pg_dump: Compatibility
● pglogical Replication: Storage Space Errors
● pglogical Replication: Temporary Space Errors
● pglogical Replication: Subscription worker remains down
● pglogical Replication: Non-partitioned to partitioned table
● pg_dump: Inheritance column order (dual parent)
● pg_dump: Inheritance column order (object creation time)
● postGIS: Raster
● Postgres v14: Invalid Index (limiting the column size)
● Postgres v9.6: Count bug
● Python psycopg2 module: far future dates
● Validation: Floating point differences
● Validation: Finding functions in v9.6 vs v14
● GCP IAM: audit user column size

 Pythian Services Inc. | www.pythian.com

Problems solved - pg_dump: Reusability

Problem
The extract file from pg_dump produces SQL but if this SQL runs more than once it fails with duplicate
names etc.

Solution
● Add IF NOT EXISTS clauses (TABLES, SEQUENCES, INDEXES, MVIEWS)
● Add OR REPLACE clauses (FUNCTIONS, VIEWS, TRIGGERS)
● Add pgPL/SQL wrappers to objects (DOMAINS, CONSTRAINTS)
● Remove superuser only objects (OPERATOR CLASS/FAMILY)
● Privileges must be split out to evaluate individually

○ GRANT SELECT,INSERT ON TABLE …
● Some objects not needed (CREATE SCHEMA, ALTER DEFAULT PRIVILEGES)
● Used sed and awk to edit the files

 Pythian Services Inc. | www.pythian.com

Problems solved - pg_dump: Compatibility

Problem
Some object types were deprecated between versions 9.6 and 14

Solution
● Edit the file using sed

○ anyarray ⇒ anycompatiblearray
○ anyelement ⇒ anycompatible

 Pythian Services Inc. | www.pythian.com

Problems solved - pglogical Replication: Storage Space Errors

Problem
Received errors on Cloud SQL console when storage had run out and it was auto extending

2025-05-20 11:30:42.733 UTC [26496]: [1-1] db=v,user=app_replica
ERROR: could not extend file "base/31213/32985": No space left on device

2025-05-20 11:30:53.005 UTC [26176]: [3-1] db=i,user=[unknown] DETAIL: destination connection reported:
ERROR: could not extend file "base/21381/26093.9": No space left on device

Solution
Create instance with the expected final size.

Note: the maximum storage size was big enough to increase when we got those errors.
This happened because the auto-extension didn’t happen as fast as the import process was moving.

 Pythian Services Inc. | www.pythian.com

Problems solved - pglogical Replication: Temporary Space Errors

Problem
- When creating large indexes on the target (migration step to optimize initial data copy)
- Also when using filters on the publisher (using pglogical, per table), when the subscription

executes the initial data copy:

ERROR: temporary file size exceeds temp_file_limit (1021877kB)

Solution
- Change the temp_file_limit to 25G (Default 10% of initial disk size) - online operation
- For pglogical errors with filtered tables, needs to be changed on the source cluster

Note: on the target, this problem is more relevant when using autoextensible disk, as this value can get
a small size compared with the desired final disk size.

https://cloud.google.com/sql/docs/postgres/flags

https://cloud.google.com/sql/docs/postgres/flags

 Pythian Services Inc. | www.pythian.com

Problems solved - pglogical Replication: Subscription worker remains
down

Problem
The subscriber remains down and we get the following log entry

2025-05-20 13:48:04.809 UTC [39716]: [2-1] db=pp,user=[unknown]
ERROR: worker registration failed, you might want to increase max_worker_processes setting

Solution
Increase max_worker_processes - requires instance reboot

NOTE: May need to increase instance memory footprint to allow for increased max_worker_processes

 Pythian Services Inc. | www.pythian.com

Problems solved - pglogical Replication: Non-partitioned to partitioned
table

Problem
When trying to replicate a “normal” table to a partitioned table, the target cluster crashed and then
entered a crash loop.

Solution
This operation cannot be done if the source is PostgreSQL 10 or older.
Reference: https://www.enterprisedb.com/docs/pgd/3.7/pglogical/replication-sets/

To recover the instance:
● Disable pglogical extension on the Cloud SQL console
● Bring up the cluster
● Drop the subscription on the offending database.
● Re-enable the pglogical extension
● Restart the cluster

https://www.enterprisedb.com/docs/pgd/3.7/pglogical/replication-sets/

 Pythian Services Inc. | www.pythian.com

Problems solved - pg_dump: Inheritance column order (dual parent)

Problem
A dual parent inherited table can be created with a different column order if the parents are not ordered
correctly

Solution
Switch the order of the parents

CREATE TABLE sales.phone (
 name varchar NOT NULL,
 from_number varchar NOT NULL,
 CONSTRAINT phone_pkey PRIMARY KEY (phone_call_id)
)
INHERITS (sales.phone_call_log, sales.phone_call);

CREATE TABLE sales.phone (
 name varchar NOT NULL,
 from_number varchar NOT NULL,
 CONSTRAINT phone_pkey PRIMARY KEY (phone_call_id)
)
INHERITS (sales.phone_call, sales.phone_call_log);

 Pythian Services Inc. | www.pythian.com

Problems solved - pg_dump: Inheritance column order (object creation
time)

Problem
In some cases where there is inheritance the column order is dependent on object creation time
1. Parent table (columns ⇒ p1, p2)
2. Child table 1 inherited from parent with extra column (columns ⇒ p1, p2, c1_col)
3. Add column to parent table (columns ⇒ p1, p2, p3)
4. Child table 1 (columns ⇒ p1, p2, c1_col, p3)
5. A new child table 2 is created, inheriting from parent when it already had the extra column:

 (columns ⇒ p1, p2, p3, c2_col)

On recreation (when using the pg_dump generated file) get the following:

1. Parent table (columns ⇒ p1, p2, p3) ✔

2. Child table 1 (columns ⇒ p1, p2, p3, c1_col) ✘

3. Child table 2 (columns ⇒ p1, p2, p3, c2_col) ✔

 Pythian Services Inc. | www.pythian.com

Problems solved - pg_dump: Inheritance column order (object creation
time)

Solution
After table is restored (no data)

parent(p1,p2,p3)✔ ; child1(p1,p2,p3,c1_col)✘ ; child2(p1,p2,p3,c2_col)✔

1. Drop parent column (p3)
parent(p1,p2)✘ ; child1(p1,p2,c1_col)✘ ; child2(p1,p2,c2_col)✘

2. Add parent column back again (p3) - this corrects child table 1
parent(p1,p2,p3)✔ ; child1(p1,p2,c1_col,p3)✔ ; child2(p1,p2,c2_col,p3)✘

3. Child table 2 is now incorrect - drop child table 2
parent(p1,p2,p3)✔ ; child1(p1,p2,c1_col,p3)✔

4. Re-create child table 2 with original inheritance clause - this corrects child table 2
parent(p1,p2,p3)✔ ; child1(p1,p2,c1_col,p3)✔ ; child2(p1,p2,p3,c2_col)✔

 Pythian Services Inc. | www.pythian.com

Problems solved - postGIS: Raster

Problem
From postGIS V3.0 the raster functions were split into their own extension

Solution
Add extension postgis_raster when postGIS is in use

 Pythian Services Inc. | www.pythian.com

Problems solved - Postgres v14: Invalid Index (limiting the column size)

Problem
Index entries in V14 are size limited

pg_restore: from TOC entry 2418; 1259 17952 INDEX comp_idx db_owner
pg_restore: error: could not execute query: ERROR: index row size 2712 exceeds btree version 4 maximum 2704 for index "comp_idx"
DETAIL: Index row references tuple (244988,4) in relation "comp".
HINT: Values larger than 1/3 of a buffer page cannot be indexed.
Consider a function index of an MD5 hash of the value, or use full text indexing.
Command was: CREATE INDEX "comp_idx" ON "doc"."comp" USING "btree" ("url");

Solution
Use a function index that hashes the value.
Note: also requires changes to the app to modify the SQL using this table to include the hash function

Example:
CREATE INDEX "comp_idx" ON "doc"."comp" (md5("url"));

 Pythian Services Inc. | www.pythian.com

Problems solved - Postgres v9.6: Count bug

Problem
There was a count problem when checking the parent table of an inheritance set of tables

● SELECT COUNT(*) FROM p1; ⇒ 1813806
● SELECT * FROM p1; ⇒ 1813796

Solution
Issuing a VACUUM FULL on the table resolves the issue

 Pythian Services Inc. | www.pythian.com

Problems solved - Python psycopg2 module: far future dates

Problem
When using python to check the data integrity found that years greater than 9999 was not handled by
the module

ValueError: year 10222 is out of range

Solution
Convert the date and timestamp columns to strings prior to comparison as the database converts far
future date correctly.

 Pythian Services Inc. | www.pythian.com

Problems solved - Validation: Floating point differences

Problem
When validating data that uses the double data type get decimal place issues and so get value
mismatches

V9.6 value : 0.981682392355061
V14 value : 0.9816823923550609

Solution
The initialization parameter extra_float_digits covers the precision of double data type output.
The default value changed in PostgreSQL v12 from 0 to 1.
Ensure that the parameter is the same on both source and target to prevent precision mismatches
during validations (it does not affect stored data)

 Pythian Services Inc. | www.pythian.com

Problems solved - Validation: Finding functions in v9.6 vs v14

Problem
The SQL that finds functions changed between V9.6 and V14
V9.6

SELECT n.nspname||'.'||p.proname AS function_name
 FROM pg_proc p
 JOIN pg_namespace n ON n.oid = p.pronamespace
 LEFT JOIN pg_depend d ON d.objid = p.oid AND d.deptype = 'e'
 WHERE p.proisagg = false -- not aggregate for V9.6
 AND p.proiswindow = false -- not window function for V9.6
 AND d.objid IS NULL -- not from extension
 AND n.nspname IN (:include_schemas)
 ORDER BY 1;

V14
SELECT n.nspname||'.'||p.proname AS function_name
 FROM pg_proc p
 JOIN pg_namespace n ON n.oid = p.pronamespace
 LEFT JOIN pg_depend d ON d.objid = p.oid AND d.deptype = 'e'
 WHERE p.prokind = 'f' -- regular user-defined functions
 AND d.objid IS NULL -- not from extensions
 AND n.nspname IN (:include_schemas)
 ORDER BY 1;

 Pythian Services Inc. | www.pythian.com

Problems solved - GCP IAM: audit user column size

Problem
Many tables had audit user columns, like created_by, modified_by, deleted_by, of varchar2(25),
GCP service accounts used by applications to connect to the Cloud SQL database where larger.

Solution
Modified all audit user columns length to varchar2(50).

$ gcloud sql users list --instance=db-target2
NAME HOST TYPE PASSWORD_POLICY
app_replica BUILT_IN
dba BUILT_IN
user1@mycompany.com CLOUD_IAM_GROUP_USER
user2@mycompany.com CLOUD_IAM_GROUP_USER
support@mycompany.com CLOUD_IAM_GROUP
service-app-invoices@mycomp-prod.iam CLOUD_IAM_SERVICE_ACCOUNT
service-api-purchases@mycomp-prod.iam CLOUD_IAM_SERVICE_ACCOUNT

 Pythian Services Inc. | www.pythian.com

Lessons
learned

 Pythian Services Inc. | www.pythian.com

Lessons learned
● POC needs to include all the complexity to proper use it for planning

○ Initial project estimations based on the POC were short (not considering all issues discovered)
○ How big should be a buffer for unknowns?

● Customizations were discovered as the project progressed
○ Issues and data volume opened the door to new decisions - hard to anticipate
○ Flexibility to implement changes with the tools used was the key
○ Third party tools would have required a lot of interactions with the vendors to make the changes

needed, if possible to request them
○ Several one-off requests that could not be automated

● Schema/objects validations were moved to earlier steps of the migration (before data transfer) to catch
problems earlier and save time (specific for table column order).

● Pglogical extension is simple to use, the main migration complexity and effort is due to custom
requirements, preparation, validation steps, and automating all steps until have a repeatable process.

● Main Cloud SQL cost is CPU, so maximize Instance memory use, and minimize CPU usage.

 Pythian Services Inc. | www.pythian.com

References

● Pglogical extension - https://github.com/2ndQuadrant/pglogical

● pgcluu - https://github.com/darold/pgcluu

● YQ utility: https://github.com/mikefarah/yq

● Partitioned tables and replication: https://www.enterprisedb.com/docs/pgd/3.7/pglogical/replication-sets/

● DVT: https://github.com/GoogleCloudPlatform/professional-services-data-validator

● Cloud SQL limits: https://cloud.google.com/sql/docs/postgres/quotas

● Google DMS: https://cloud.google.com/database-migration

● Cloud SQL PSA and PSC configuration:
https://cloud.google.com/sql/docs/postgres/configure-private-services-access-and-private-service-connect

● Cloud SQL users: https://cloud.google.com/sql/docs/postgres/users

https://github.com/2ndQuadrant/pglogical
https://github.com/darold/pgcluu
https://github.com/mikefarah/yq
https://www.enterprisedb.com/docs/pgd/3.7/pglogical/replication-sets/
https://github.com/GoogleCloudPlatform/professional-services-data-validator
https://cloud.google.com/sql/docs/postgres/quotas
https://cloud.google.com/database-migration
https://cloud.google.com/sql/docs/postgres/configure-private-services-access-and-private-service-connect
https://cloud.google.com/sql/docs/postgres/users

 Pythian Services Inc. | www.pythian.com

Questions?

calero@pythian.com
https://www.linkedin.com/in/ncalero
@ncalerouy

davies@pythian.com
https://www.linkedin.com/in/lukedavies/

 Pythian Services Inc. | www.pythian.com

Agenda
1. Project description

2. Migration options

3. How we did it

4. Problems solved

5. Lessons learned

6. Appendix - for reference
● Capacity planning
● Automation config files
● pglogical publisher creation
● Schema and Data validation

 Pythian Services Inc. | www.pythian.com

Appendix - Capacity planning
mydb=# \COPY connection_stats FROM '/tmp/all_conn_state.txt' DELIMITER ',' CSV HEADER;
COPY 816314

mydb=# \COPY db_stats FROM '/tmp/all_db_stats.txt' DELIMITER ',' CSV HEADER;
COPY 13990

mydb=# \i aas.sql
 host | snaps | cnt_sum | cnt_max | cnt_avg | act_max | act_avg | max_max_in_db
-------+-------+---------+---------+---------+---------+---------+----------------
 ins1 | 803 | 829 | 2 | 1.032 | 4 | 1.127 | 4
 inst2 | 2984 | 3953 | 5 | 1.325 | 8 | 1.366 | 5
 Inst3 | 5264 | 17539 | 12 | 3.332 | 55 | 8.256 | 28
 inst4 | 1198 | 1254 | 3 | 1.047 | 9 | 1.410 | 9
 inst5 | 5274 | 12056 | 6 | 2.286 | 29 | 9.393 | 21
 Inst6 | 3898 | 5088 | 5 | 1.305 | 32 | 3.144 | 31
...

 Pythian Services Inc. | www.pythian.com

Capacity planning
mydb=# \COPY connection_stats FROM '/tmp/all_conn_state.txt' DELIMITER ',' CSV HEADER;
COPY 816314

mydb=# \COPY db_stats FROM '/tmp/all_db_stats.txt' DELIMITER ',' CSV HEADER;
COPY 13990

mydb=# \i aas.sql
 host | snaps | cnt_sum | cnt_max | cnt_avg | act_max | act_avg | max_max_in_db
-------+-------+---------+---------+---------+---------+---------+----------------
 ins1 | 803 | 829 | 2 | 1.032 | 4 | 1.127 | 4
 inst2 | 2984 | 3953 | 5 | 1.325 | 8 | 1.366 | 5
 Inst3 | 5264 | 17539 | 12 | 3.332 | 55 | 8.256 | 28
 inst4 | 1198 | 1254 | 3 | 1.047 | 9 | 1.410 | 9
 inst5 | 5274 | 12056 | 6 | 2.286 | 29 | 9.393 | 21
 Inst6 | 3898 | 5088 | 5 | 1.305 | 32 | 3.144 | 31
...

cat aas.sql

select host,
 count(1) snaps,
 sum(cnt) cnt_sum,
 max(cnt) cnt_max,
 round(avg(cnt),3) cnt_avg,
 max(active_total) active_max,
 round(avg(active_total),3) active_avg,
 max(max_in_db) max_max_in_db
from (
 select host, snap, sum(count) active_total,
 count(distinct datname) dbs,
 max(count) max_in_db,
 count(1) cnt
 from connection_stats
 where state='active' and datname!='postgres'
 group by host, snap
) group by host;

 Pythian Services Inc. | www.pythian.com

Capacity planning

mydb=# create view db_stats_snap_v as
select host, datname, snap, numbackends,
 xact_commit, xact_commit - lag(xact_commit) OVER (partition by host, datname ORDER BY snap) xact_commit_dt,
 xact_rollback, xact_rollback - lag(xact_rollback) OVER (partition by host, datname ORDER BY snap) xact_rollback_dt,
 blks_read, blks_read - lag(blks_read) OVER (partition by host, datname ORDER BY snap) blks_read_dt,
 blks_hit, blks_hit - lag(blks_hit) OVER (partition by host, datname ORDER BY snap) blks_hit_dt,
 tup_returned, tup_returned - lag(tup_returned) OVER (partition by host, datname ORDER BY snap) tup_returned_dt,
 tup_fetched, tup_fetched - lag(tup_fetched) OVER (partition by host, datname ORDER BY snap) tup_fetched_dt,
 tup_inserted, tup_inserted - lag(tup_inserted) OVER (partition by host, datname ORDER BY snap) tup_inserted_dt,
 tup_updated, tup_updated - lag(tup_updated) OVER (partition by host, datname ORDER BY snap) tup_updated_dt,
 tup_deleted, tup_deleted - lag(tup_deleted) OVER (partition by host, datname ORDER BY snap) tup_deleted_dt,
 conflicts, conflicts - lag(conflicts) OVER (partition by host, datname ORDER BY snap) conflicts_dt,
 temp_files, temp_files - lag(temp_files) OVER (partition by host, datname ORDER BY snap) temp_files_dt,
 temp_bytes, temp_bytes - lag(temp_bytes) OVER (partition by host, datname ORDER BY snap) temp_bytes_dt,
 deadlocks, deadlocks - lag(deadlocks) OVER (partition by host, datname ORDER BY snap) deadlocks_dt
 from db_stats
 where datname not in ('template0','template1')
 order by host, datname, snap;

mydb=# \COPY (select * from db_stats_snap_v) TO '/tmp/db_stats_snap_v.csv' DELIMITER ',' CSV HEADER;
COPY 12742

 Pythian Services Inc. | www.pythian.com

Capacity planning - Sample graphs

 Pythian Services Inc. | www.pythian.com

Appendix - Migration automation - Config: migrate_db.yaml
servers:
 - name: server1
 databases:
 - name: inventory
 target: db-target-2
 method: pglogical
 stage: 0
 completed: false
 schemas:
 - name: inventory
 - name: server2
 databases:
 - name: sales
 target: db-target-2
 method: pglogical
 stage: 115
 completed: true
 schemas:
 - name: sales
 - name: clients
 - name: ...

Source Instance

Database Name
Target Instance

Schema Name

Migration Method

Current Stage
Completed flag

 Pythian Services Inc. | www.pythian.com

Migration automation - Config: migrate_env.yaml
general:
 postgresUser: "nelson"
 parallelStreams: 4
 superUser: dba
 ownerUser: db_owner
 replUser: app_replica
 urlBase: prod.mydb.com
stages:
 - stage: 5
 description: "Create owner db_builder"
 script: "<binDir>/create_owner.sh -l <logFile> -h <target> -U <superUser> <ownerUser>"
 rollback: "<binDir>/drop_role.sh -h <target> -U <superUser> <ownerUser>"
 method: all
 - stage: 10
 ...
 - stage: 84
 description: "Load Database Data"
 script: "<binDir>/run_pgrestore.sh -l <logFile> -h <server> -U <superUser> -d <database> -a <target>"
 method: pgdump
 ...
 - stage: 90
 description: "Install pglogical on target"
 script: "<binDir>/install_pglogical.sh -l <logFile> -h <target> -U <superUser> -d <database> -r <replicaUser> -t"
 method: pglogical

Source DBA user
Parallel migrations

Run stage

Command

Replacement Variable

Migration Method

 Pythian Services Inc. | www.pythian.com

Migration automation - Reading / Writing config

● Use yq
○ yq -r '.servers[] | select(.name == "db") | .databases[] | select(.name == "location") | .target'
○ yq -iy '(.servers[] | select(.name == "db") | .databases[] | select(.name == "location").stage) = 10'

● Use flock
○ flock db_config.yaml <yq command>

● Parallel running
○ RunMigrate <parameter1> <parameter2> &
○ wait -n

 Pythian Services Inc. | www.pythian.com

Appendix - Migration automation - pglogical publisher creation

● Max of two publishers per database - one for insert-only schemas, other for the rest
● Code generated by the publisher creation step - easy to review generated SQL in case of issues

$ cat gensql/server1_db1_pub.sql
/* ## Create publishers for pglogical replication on source host server1 for database db1 ## */
/* ### CRUD schemas - no log ### */
do $$
declare
 ret oid;
begin
 if not exists (SELECT set_id FROM pglogical.replication_set WHERE set_name = 'db1_pub') then
 ret := pglogical.create_replication_set('db1_pub');
 RAISE NOTICE 'Replication set porch_pub created with OID %', ret;
 else
 RAISE NOTICE 'Replication set porch_pub already created - skipping creation';
 end if;
end $$;
/* schema1 schema */
GRANT USAGE ON SCHEMA schema1 TO app_replica;
GRANT SELECT,INSERT,UPDATE,DELETE ON ALL TABLES IN SCHEMA schema1 TO app_replica;
GRANT USAGE,SELECT ON ALL SEQUENCES IN SCHEMA schema1 TO app_replica;
SELECT pglogical.replication_set_add_all_tables('db1_pub', ARRAY['schema1']);
select pglogical.replication_set_add_all_sequences('db1_pub', ARRAY['schema1']);
/* schema2 schema */

...

 Pythian Services Inc. | www.pythian.com

Migration automation - pglogical publisher creation

● Max of two publishers per database - one for insert-only schemas, other for the rest
● Code generated by the create publisher step - easy to review generated SQL in case of issues

$ cat gensql/server1_db1_pub.sql
/* ## Create publishers for pglogical replication on source host server1 for database db1 ## */
/* ### CRUD schemas - no log ### */
do $$
declare
 ret oid;
begin
 if not exists (SELECT set_id FROM pglogical.replication_set WHERE set_name = 'db1_pub') then
 ret := pglogical.create_replication_set('db1_pub');
 RAISE NOTICE 'Replication set porch_pub created with OID %', ret;
 else
 RAISE NOTICE 'Replication set porch_pub already created - skipping creation';
 end if;
end $$;
/* schema1 schema */
GRANT USAGE ON SCHEMA schema1 TO app_replica;
GRANT SELECT,INSERT,UPDATE,DELETE ON ALL TABLES IN SCHEMA schema1 TO app_replica;
GRANT USAGE,SELECT ON ALL SEQUENCES IN SCHEMA schema1 TO app_replica;
SELECT pglogical.replication_set_add_all_tables('db1_pub', ARRAY['schema1']);
select pglogical.replication_set_add_all_sequences('db1_pub', ARRAY['schema1']);
/* schema2 schema */

...

...
/* ### Insert only schemas ### */
do $$
declare
 ret oid;
begin
 if not exists (SELECT set_id FROM pglogical.replication_set WHERE set_name = 'db1_log_pub') then
 ret := pglogical.create_replication_set(set_name := 'db1_log_pub',
 replicate_update:= false, replicate_delete:= false);
 RAISE NOTICE 'Replication set porch_log_pub created with OID %', ret;
 else
 RAISE NOTICE 'Replication set porch_log_pub already created - skipping creation';
 end if;
end $$;
/* schema1_log schema */
GRANT USAGE ON SCHEMA schema1_log TO app_replica;
GRANT SELECT,INSERT,UPDATE,DELETE ON ALL TABLES IN SCHEMA schema1_log TO app_replica;
GRANT USAGE,SELECT ON ALL SEQUENCES IN SCHEMA schema1_log TO app_replica;
SELECT pglogical.replication_set_add_all_tables('db1_log_pub', ARRAY['schema1_log']);
select pglogical.replication_set_add_all_sequences('db1_log_pub', ARRAY['schema1_log']);
/* schema2_log schema */
...

 Pythian Services Inc. | www.pythian.com

Appendix - Migration automation - Schema and Data validation

● Initial version using Google Data Validation Tool (DVT)
○ https://github.com/GoogleCloudPlatform/professional-services-data-validator
○ Python code
○ Several executions per schema - a few seconds overhead, big total for large clusters
○ Errors casting column data types - fixed a few, but new DBs raised new errors
○ Requires custom config per source and target DB

● Final version using DVT (schema validation) and custom python script (data validation)
○ Schema validations implemented through external SQLs and DVT

■ Configurable and easy to deal with catalog version changes (i.e.: find all user created
functions)

○ Data validations using hash over all table columns
■ Similar column casting errors as in DVT. Implemented all fixes in a single place
■ Special treatment for large tables

● Limit to a few thousands sample rows (random PK)
● Using TABLESAMPLE based on estimated table size

https://github.com/GoogleCloudPlatform/professional-services-data-validator

 Pythian Services Inc. | www.pythian.com

Migration automation - Schema validation
(venv) ncalero@test:/migra/bin$ python3 schema_compare.py source-inst db-name target-inst
Running validations for database: db-name on host source-inst
 Object Count Summary ...
 Schemas to validate: 'sales','customers','public'

 INFO - /mnt/dump/dvt/venv/bin/data-validation validate custom-query row -sc psql_test_db-name_source -tc
psql_test_db-name_target -sqf="/validation/modified_sql/source-inst/objectsummary_source_db-name.sql"
-tqf="/validation/modified_sql/source-inst/objectsummary_target_db-name.sql" --primary-keys="col1" --concat='*' -fmt 'csv'

 ... Warning: Some rows failed to validate
Validation Results:
source target validation_status
------------------------------------ ------------------------------------ -----------------
Schema count → 5 Schema count → 5 success
Extension count → 6 Extension count → 6 success
View count → 1 View count → 1 success
Table count → 6 Table count → 7 fail
Materialized View count → 0 Materialized View count → 0 success
Index count → 29 Index count → 29 success
Partition count → 7 Partition count → 6 fail
Trigger count → 18 Trigger count → 18 success
Sequence count → 8 Sequence count → 8 success
Primary Key count → 13 Primary Key count → 13 success
Foreign Key count → 5 Foreign Key count → 5 success
Unique Constraint count → 7 Unique Constraint count → 7 success
Check Constraint count → 1 Check Constraint count → 1 success
Userdefined Function count → 6 Userdefined Function count → 6 success

 Pythian Services Inc. | www.pythian.com

Migration automation - Data validation

def _process_value(self, col, value):

 if isinstance(value, (datetime, time.struct_time, dt_time)):
 return value.isoformat()

 elif isinstance(value, (DateTimeTZRange, Decimal, NumericRange, date, timedelta, list, DateRange)):
 return str(value)

 elif isinstance(value, memoryview):
 return base64.b64encode(value.tobytes()).decode('utf-8')

 else:
 return value

Code to cast column data types:

 Pythian Services Inc. | www.pythian.com

Migration automation - Data validation

 def _get_random_primary_keys(self, conn, schema, table, pk_columns, sample_perc):
 cursor = conn.cursor()
 pk_column_str = ", ".join(pk_columns)
 where_clause = " AND ".join([f"{col} IS NOT NULL" for col in pk_columns])
 sql = f"""
 SELECT {pk_column_str}
 FROM {schema}.{table} TABLESAMPLE SYSTEM(%s)
 WHERE {where_clause}
 LIMIT %s;
 """
 fetch_limit = max(2 * self.sample_size, 1000)
 self._execute_sql(cursor, sql, conn, (sample_perc,fetch_limit,))
 if len(pk_columns) == 1:
 all_pks = [row[0] for row in cursor.fetchall()]
 else:
 all_pks = [tuple(row) for row in cursor.fetchall()]

 cursor.close()
 return random.sample(all_pks, min(len(all_pks), self.sample_size))

Code to get random PK for large tables:

 Pythian Services Inc. | www.pythian.com

Migration automation - Data validation

 def _get_random_primary_keys(self, conn, schema, table, pk_columns, sample_perc):
 cursor = conn.cursor()
 pk_column_str = ", ".join(pk_columns)
 where_clause = " AND ".join([f"{col} IS NOT NULL" for col in pk_columns])
 sql = f"""
 SELECT {pk_column_str}
 FROM {schema}.{table} TABLESAMPLE SYSTEM(%s)
 WHERE {where_clause}
 LIMIT %s;
 """
 fetch_limit = max(2 * self.sample_size, 1000)
 self._execute_sql(cursor, sql, conn, (sample_perc,fetch_limit,))
 if len(pk_columns) == 1:
 all_pks = [row[0] for row in cursor.fetchall()]
 else:
 all_pks = [tuple(row) for row in cursor.fetchall()]

 cursor.close()
 return random.sample(all_pks, min(len(all_pks), self.sample_size))

Code to get random PK for large tables:

...
 estd_rows = self._get_table_rows_est(source_conn, schema, table)
 safety_factor = Decimal(3)
 v_sample_perc = (Decimal(self.sample_size) / max(estd_rows,1)) * 100 * safety_factor
 v_sample_perc = max(Decimal('0.00001'), min(Decimal('100.0'), v_sample_perc))

 logging.info(f".... getting random PKs in source (rows={estd_rows} sample={v_sample_perc:.3f}%)")
 source_pks = self._get_random_primary_keys(source_conn, schema, table, pk_columns, v_sample_perc)
 if not source_pks:
 logging.info(f"No data found in {schema}.{table} or sample size is zero.")
 status = "OK (No Data)"
 return status, time.time() - start_time
...

