Pythian

Migrating 100+ Postgres
databases to the Cloud

Nelson Calero Luke Davies
Principal Consultant Principal Consultant
Pythian Pythian

PGConf.EU 2025
October 21-24, Riga, Latvia

Agenda

Pythian

Project description
Migration options
How we did it
Problems solved
Lessons learned

Appendix - for reference

Pythian Services Inc. | www.pythian.com

Pythian

Nelson Calero
Pythian - Principal Consultant

e 25+ years Database experience
e Oracle ACE Director

e Community Volunteer - LAOUC / UYOUG leader
e Montevideo, Uruguay

LinkedIn: https://www.linkedin.com/in/ncalero
Twitter / X: @ncalerouy

Luke Davies
Pythian - Principal Consultant

e 30+ years Database experience
e Chelmsford, UK

LinkedIn: https://www.linkedin.com/in/lukedavies

Pythian Services Inc. | www.pythian.com

awse
certified

Solutions
Architect

ASSOCIATE

ORACLE’
Certified
Professional
2, 5

e &
e 1 .m«““‘«

i orRACLE
Certified

. Professional

= 4

ORACLE
Certified

Specialist
Oracle ming
s

ORACLE’
Certified
Expert
& :»

Professional
| Oracle Cloud Infrastructure | |-
Architect

2019

400+

Experts across every Data Domain & Technology

Years in Business

350+

Global Customers

Pyth|an Pythian Services Inc. | www.pythian.com

The project

Pythian

Problem description - initial information

e PostgreSQL 9.6 instances running on VMs

e 10 servers, 100+ databases

e Several multi-TB databases

e Using inheritance, PostGIS, and special data types

e Looking to migrate to a Cloud managed services with minimal downtime (GCP)
e Already evaluated replication tools and found problems: Google DMS, Striims

e Many tables not having PK

Pythian

Problem description - initial information + discovered

e PostgreSQL 9.6 instances running on VMs

e 10 servers, 10| Discovered a lot of customizations

Problems with replication tools tested were not well documented
Test and Dev environments does not have the same data sizes as production
Application to database mappings is not well documented
3 months deadline to complete the migration (platform and financial constraints)
Tables without PK are insert only
Source and target DBs on different networks VPCs, no direct connectivity
Use private IPs for DBs - apps will connect using Private Service Connect (PSC)
Looking to implement some changes in the target, as part of the migration
o Use GCP ldentity and Access Management (IAM) authentication
Regroup databases to align with application usage
Move from inheritance to declarative partitioning
Not all schemas will be migrated
Not all data from large tables is needed (some will be archived)

e Several multi
e Using inherit

e Looking to mi
e Already evalu

e Many tables

o O O O

Pythian

Project timeline

Next environment:
- Infra provisioning

- Migrations
— - Cutovers
Migration Migrations App - App testing
POC Automation (100 DBs) testing - Cost optimization

T T T T L
! | ! J, [
Discovery Capacity Environment Cutovers Cost

Planning Provisioning (N waves) optimization

Pythian I-

Project timeline @

@ Next environment:
@ - Infra provisioning
@ - Migrations
— - Cutovers
Migration Migrations App - App testing
POC Automation (100 DBs) testing - Cost optimization
I T T T T
>
! | ! | |
Discovery Capacity Environment Cutovers Cost
Planning Provisioning (N waves) optimization

Pythlan Pythian Services Inc. | www.pythian.com '

Target platform (including old DBs for migration)

) Google Cloud Platform

e DB v9 VPC e Cloud SQL VPC
PSC
PostgreSQL VM1 Cloud SQLT o Endpoint =
DB1 DB1 o= f—o

DB2 DB20

Admins

@ PostgreSQL VM2 o
Cloud SQL 2
DB20 e oud SQ <—» Endpoint
DB21 oes — APP VPC
DB31
@ (]
-—>

PSA

) APP Clients
PostgreSQL VM9 (pglogical) Cloud SQL 7
@ DBYO DB4 <= Endpoint

DB91 DB50
@ APP VM NN -—— — D

APP Clients

Pythlan Pythian Services Inc. | www.pythian.com

Migration

options

Pythian

Migration options explored

e Google DMS - htips://cloud.google.com/database-migration
o No extra cost for homogenous migrations to Cloud SQL
o Features improved since the customer’s POC, but only possible to migrate all DBs in an
instance at that time (July/2024)
o No documented problems with inheritance, PostGIS or data types
No time to evaluate with all DBs to decide (based on customer past experience)

e Third-party replication tools

o License cost implications
o No documented problems with inheritance, PostGIS or data types

o Customer aversion given the experience with one of them, and limited time to test them

e Pglogical extension - https://github.com/2ndQuadrant/pglogical
o Simple POCs didn’t show any problems
o Need to develop automation to use it at scale

Pythian Ir

https://cloud.google.com/database-migration
https://github.com/2ndQuadrant/pglogical

Migration options explored - pglogical extension

DB v9 VPC
(11 © cossavee

@ PostgreSQL VM1 e Cloud SQL 1
@DB‘I - Pub1 DB1 - Sub1

EDBZ-PUDZ DB20 - Sub20
@DBn-Pubn @DB X - SubX

@ PostgreSQL VM2 9 Cloud SQL 2
BDBZO- Pub20 DB5 - Sub5

BDBm - Pub21 @0831 - Sub31
BDBZn - Pub2n PSA @DBY - Suby
(pglogical)

Pyth|an Pythian Services Inc. | www.pythian.com

How

Setup

One Publisher per source DB
One Subscriber per target DB
Connection initiated by target
Mix of data flows between Clusters

PSA enabled on Cloud SQL VPC
pg_hba.conf changes on source
PostgreSQL parameters changes in
both source and target for pglogical

How we did it

Pythian

Project decisions

Pythian

Initial discovery to document all source DBs complexities
o version, extensions, data types, sizes

POC of the entire migration using pglogical for three representative DBs
o size, features (PostGis, inheritance, data types), and app complexity

Capacity planning to size the target clusters (and validate the initial proposed mapping)

Automate as much as possible to minimize manual interventions and errors
o Terraform to provision - VPC, IAM, Cloud SQL instances, roles and IAM attachments
o A migration framework using open source tools - not reinventing the wheel
m Used for databases creation and data migration
o Cutover scripts - manual intervention was required in coordination with app team

No big-bang migration, to reduce application risks
o several migration waves of ~20 DB each, in a two hours migration window

Project decisions

Pythian

Initial discovery to document all source DBs complexities
o version, extensions, data types, sizes

POC of the entire migration using pglogical for three representative DBs
o size, features (PostGis, inheritance, data types), and app complexity

Capacity planning to size the target clusters (and validate the initial proposed mapping)

Automate as much as possible to minimize manual interventions and errors
o Terraform to provision - VPC, IAM, Cloud SQL instances, roles and IAM attachments
o A migration framework using open source tools - not reinventing the wheel
m Used for databases creation and data migration
o Cutover scripts - manual intervention was required in coordination with app team

No big-bang migration, to reduce application risks
o several migration waves of ~20 DB each, in a two hours migration window

pglogical extension POC

Few issues found
e Slow initial data copy for large tables (+20 hours for a 80Gb table)
e Even slower when having several indexes, or large toast
e Ownership and grants errors
o No superuser allowed in GCP - cloudsqlsuperuser role instead (but not the same)
https://cloud.google.com/sqgl/docs/postgres/users

Solutions:

e Not a problem if WAL file retained on source (per replication slot) is not big
o It was our case, even with heavy concurrency we saw few GB in 24 hours

e Speeding up subscription initial data copy:
o Before starting subscriptions, drop non PK indexes on large tables
o Recreate indexes after data copy - parameters tweaked (parallelism & memory)
o GIST indexes took hours for large tables (+100GB), no parallel and/or online options
o Initial data copy + indexes creation reduced to 8 hours in total from 32 hours.

e Tested dump/restore for the initial copy - complex and not safe with concurrent sessions

Pythian

https://cloud.google.com/sql/docs/postgres/users

Capacity planning

Extracting PostgreSQL metrics per database
e Evaluated pgcluu - https://github.com/darold/pgcluu
o Simple and nice reports to explore metrics captured, but grouped by cluster
e Implemented crontab script gathering stats per database
o Hourly snapshots from pg_stats_database
o Minutely snapshots of session state from pg_stats_activity
e track_io_timing parameter was disabled in all production clusters (default)
o If enabled, block read/write_time stats are captured
o performance overhead (not tested, as per docs)

Analysis of metrics captured
e Imported data into a local PostgreSQL DB - db_stats and connection_stats tables
e Created view to get delta values for stats - db_stats snap_v
e Created table with DB mappings to explore target instances - sql_instances
e Created an XLS and charts using pivot tables (mainly commits, reads and hits delta values)

Pythian

https://github.com/darold/pgcluu

Migration automation

Design decisions:
e Open source tools - bash and YAML configuration files
Parallel database migrations
Resume capabilities
Summary and detailed Logging
Cutover process in waves

Configuration files:
e YAML file for migration steps
e YAML file for databases to process, including relevant content
o source and target instances, schemas, data to discard, wave group, etc.

Main migration script in bash
e Reading configuration and calling scripts needed on each step

Pythian

Migration automation - Overview

DBA DBC

Owner Owner Owner
Creation Creation Creation

|

uoleiIBip [aseqeleq
uoljelIBy aseqejeq
uoljelBlyy aseqejeq

Create Create
Large Large Large
Indexes Indexes Indexes

Validate Validate
Objects Objects

| | |

Validate Validate Validate

Pythian Dats bato . e

Migration automation - Relevant steps

Several steps involved, pglogical being one of them

Pythian

Target instance creation (terraform)
Target IAM users attachment (gcloud commands)
Schema creation (pg_dump/restore)

o Ownerships and grants adjustment (sed on the export file)
Pglogical installation on source and target
Pglogical publisher configuration on source
Pglogical subscriber configuration on target

o Drop indexes for large tables

o Generate statements to recreate them
Monitor initial data copy, continue only after it completes
Execute index creation script (if needed)
Schema and data verification

o Count rows for small tables

o Hash over all columns for a sample rows - all tables
Vacuum Analyze

Migration automation - Relevant steps

Several steps involved, pglogical being one of them

Pythian

Target instance creation (terraform)
Target IAM users attachment (gcloud commands)
Schema creation (pg_dump/restore)

o Ownerships and grants adjustment (sed on the export file)
Pglogical installation on source and target
Pglogical publisher configuration on source
Pglogical subscriber configuration on target

o Drop indexes for large tables

o Generate statements to recreate them
Monitor initial data copy, continue only after it complete
Execute index creation script (if needed)
Schema and data verification

o Count rows for small tables

o Hash over all columns for a sample rows - all tables
Vacuum Analyze

details in appendix

Migration automation - Sample execution

$ bin/migrate.sh -v -c migrate_prod -t db-target2 -d db5

MAIN:
MAIN:
MAIN:
MAIN:
MAIN:
MAIN:
MAIN:
MAIN:
MAIN:

Configuration file set to /migra/config/migrate_prod.yaml
Database Target Server set to db-sourcel

Database Name set to db5

Getting servers

Processing Server db-sourcel

Getting databases

Processing Server db-source3

Getting databases

Processing Database db-source3 -> db5

SetGlobals:
SetGlobals:
SetGlobals:
SetGlobals:
SetGlobals:
SetGlobals:
SetGlobals:
SetGlobals:
SetGlobals:
SetGlobals:
SetGlobals:
SetGlobals:
SetGlobals:
SetGlobals:

ReplicaUser set to app_replica

PostgresUser set to ncalero

TotalParallel set to 4

URLBase set to prod.mydb.com

SuperUser set to dba

OwnerUser set to db_owner

Variable ScriptBaseDir unset. Defaulting to /migra
ScriptBaseDir set to /migra

Variable ScriptBinDir unset. Defaulting to /migra/bin
ScriptBinDir set to /migra/bin

Variable ScriptSQLDir unset. Defaulting to /migra/sql
ScriptSQLDir set to /migra/sql

Variable ScriptSQLgenDir unset. Defaulting to /migra/gensql
ScriptSQLgenDir set to /migra/gensql

MAIN: Run Migrate job for database db-source3 -> db5 set off with PID 1878913

RunMigrate:

Migrating database db-source3 -> db5 to target db-target2 using pglogical

Migration automation - Sample execution

$ bin/migrate.sh -v -c migrate_prod -t db-target2 -d db5

MAIN: Configuration file set to /migra/config/migrate_prod.yaml

MAIN: Databas

MAIN: Databasg ---

MAIN: Getting] RunMigrate: Migrating database db-source3 -> db5 to target db-target2 using pglogical

MAIN: Processi RunMigrate: Database db-source3 -> db5 starting from stage 60

MAIN: Getting| MAIN: Processing Server db-source3

MAIN: Processi MAIN: Getting databases ...

MAIN: Gettingl| RunStep: Running migration stage 70 for Database db-source3 -> db5

MAIN: Processi MAIN: Processing Server db-source4

SetGlobals: MAIN: Getting databases ...

SetGlobals: MAIN: Processing Server db-source5

SetGlobals: MAIN: Getting databases ...

SetGlobals: RunStep: Database db-source3 -> db5 running stage 70 -> Fix up Database Object MetaData Dump
SetGlobals: RunStep: Database db-source3 -> db5 running script -> /migra/bin/fix_pgdump.sh -1
SetGlobals: /migra/logs/migrate_db5_db5_250709173710.1log -h db-source3.prod.mydb.com -d db5 -s 10.100.0.11 db_owner
SetGlobals: 000

SetGlobals:

SetGlobals: Variable ScriptBinDir unset. Defaulting to /migra/bin

SetGlobals: ScriptBinDir set to /migra/bin

SetGlobals: Variable ScriptSQLDir unset. Defaulting to /migra/sql

SetGlobals: ScriptSQLDir set to /migra/sql

SetGlobals: Variable ScriptSQLgenDir unset. Defaulting to /migra/gensql

SetGlobals: ScriptSQLgenDir set to /migra/gensql

MAIN: Run Migrate job for database db-source3 -> db5 set off with PID 1878913

RunMigrate: Migrating database db-source3 -> db5 to target db-target2 using pglogical r

Migration automation - Sample execution

$ bin/migrate.sh -v -c migrate_prod -t db-target2 -d db5

MAIN: Configuration file set to /migra/config/migrate_prod.yaml

MAIN: Databas

MAIN: Databa 000

MAIN: Getting| RunMigrate: Migrating database db-source3 -> db5 to target db-target2 using pglogical

MAIN:

RunMigrate: Database db-source3 -> db5 starting from stage 60
MAIN: Processing Server db-source3

Filters: Target=
General info

Database Size GB
dbl 312.00
db67 1102.00
db5 3464.00
db11 7.02
db24 95.00
db32 234.00
db18 278.00
db41 271.00
db89 1.84
db52 0.01

$ bin/status.sh -w w4

Wave=w4

Method Stage

pglogical
pglogical
pglogical
pglogical
pglogical
pglogical
pglogical
pglogical
pglogical
pglogical
pglogical

115
105
105
115
115
115
115
115
115
115
115

Wave
w4
w4
w4
w4
w4
w4
w4
w4
w4
w4
w4

Replica (target)

Completed Con/Run

true 2/2
false 2/1
false 2/0

true 1/1

true 2/2

true 2/2

true 2/2

true 2/2

true 2/2

true 1/1

true 2/2

Rep Status Con/Run

good 2/2
bad 1/1
Copying 2/0
good 1/1
good 2/2
good 2/2
good 2/2
good 2/2
good 2/2
good 1/1
good 2/2

Publisher (source)

Pub Lag

Source

good/Lag(1)
good
good/Lag(1)
good/Lag(2)
good
good
good
good/Lag(2)

db-sourcel
db-sourcel
db-source3
db-source2
db-source2
db-source2
db-source4
db-source4
db-source4
db-source5
db-source5

db-targetl
db-targetl
db-target2
db-targetl
db-target3
db-target3
db-target3
db-target3
db-target4
db-target4
db-targetl

Migration automation - Cutover

e Pre-cutover validations (shell script - day before cutover)

@)

o O O O O

O

Replication status (primary and replica)
Replication slots details (primary)

Publishers and subscribers' details

WAL directory files and size in primary

Table Statistics update and status (using analyze)
Accounts attached to the target server(s)

Owners of database objects

e Cutover steps

Show database connections (source and target)

Show RO and RW role grants for SA accounts (target)
Application switchover

Update sequence values to match source values (target)
Grant RW roles to SA accounts (target)

e Post-cutover validations (days after cutover)

@)

O

Pythian

Show database connections (source and target)
Remove replication configuration (subscribers and publishers)

Problems faced

(and solved)

Pythian

Problems solved

Pythian

pg_dump: Reusability

pg_dump: Compatibility

pglogical Replication: Storage Space Errors

pglogical Replication: Temporary Space Errors

pglogical Replication: Subscription worker remains down
pglogical Replication: Non-partitioned to partitioned table
pg_dump: Inheritance column order (dual parent)
pg_dump: Inheritance column order (object creation time)
postGIS: Raster

Postgres v14: Invalid Index (limiting the column size)
Postgres v9.6: Count bug

Python psycopg2 module: far future dates

Validation: Floating point differences

Validation: Finding functions in v9.6 vs v14

GCP IAM: audit user column size

Problems solved - pg_dump: Reusabhility

Problem

The extract file from pg_dump produces SQL but if this SQL runs more than once it fails with duplicate
names etc.

Solution
e Add IF NOT EXISTS clauses (TABLES, SEQUENCES, INDEXES, MVIEWS)
Add OR REPLACE clauses (FUNCTIONS, VIEWS, TRIGGERS)
Add pgPL/SQL wrappers to objects (DOMAINS, CONSTRAINTS)
Remove superuser only objects (OPERATOR CLASS/FAMILY)
Privileges must be split out to evaluate individually
o GRANT SELECT, INSERT ON TABLE ..
Some objects not needed (CREATE SCHEMA, ALTER DEFAULT PRIVILEGES)
e Used sed and awk to edit the files

Pythian Ir

Problems solved - pg_dump: Compatibility

Problem
Some object types were deprecated between versions 9.6 and 14

Solution

e Edit the file using sed
o anyarray = anycompatiblearray
o anyelement = anycompatible

Pythian

Problems solved - pglogical Replication: Storage Space Errors

Problem
Received errors on Cloud SQL console when storage had run out and it was auto extending

2025-085-20 11:30:42.733 UTC [26496]: [1-1] db=v,user=app_replica
ERROR: could not extend file "base/31213/32985": No space left on device

2025-05-20 11:30:53.005 UTC [26176]: [3-1] db=i,user=[unknown] DETAIL: destination connection reported:
ERROR: could not extend file "base/21381/26093.9": No space left on device

Solution
Create instance with the expected final size.

Note: the maximum storage size was big enough to increase when we got those errors.
This happened because the auto-extension didn’t happen as fast as the import process was moving.

Pythian Ir

Problems solved - pglogical Replication: Temporary Space Errors

Problem
- When creating large indexes on the target (migration step to optimize initial data copy)
- Also when using filters on the publisher (using pglogical, per table), when the subscription
executes the initial data copy:

ERROR: temporary file size exceeds temp_file_limit (1021877kB)

Solution
- Change the temp_file_limit to 25G (Default 10% of initial disk size) - online operation
- For pglogical errors with filtered tables, needs to be changed on the source cluster

Note: on the target, this problem is more relevant when using autoextensible disk, as this value can get
a small size compared with the desired final disk size.

https://cloud.google.com/sql/docs/postares/flags

Pythian Ir

https://cloud.google.com/sql/docs/postgres/flags

Problems solved - pglogical Replication: Subscription worker remains
down

Problem
The subscriber remains down and we get the following log entry

2025-85-20 13:48:04.809 UTC [39716]: [2-1] db=pp,user=[unknown]
ERROR: worker registration failed, you might want to increase max_worker_processes setting

Solution
Increase max_worker_processes - requires instance reboot

NOTE: May need to increase instance memory footprint to allow for increased max_worker_processes

Pythian Ir

Problems solved - pglogical Replication: Non-partitioned to partitioned
table

Problem
When trying to replicate a “normal” table to a partitioned table, the target cluster crashed and then
entered a crash loop.

Solution
This operation cannot be done if the source is PostgreSQL 10 or older.
Reference: https://www.enterprisedb.com/docs/pad/3.7/palogical/replication-sets/

To recover the instance:

e Disable pglogical extension on the Cloud SQL console
Bring up the cluster
Drop the subscription on the offending database.
Re-enable the pglogical extension
Restart the cluster

Pythian

https://www.enterprisedb.com/docs/pgd/3.7/pglogical/replication-sets/

Problems solved - pg_dump: Inheritance column order (dual parent)

Problem
A dual parent inherited table can be created with a different column order if the parents are not ordered
correctly

CREATE TABLE sales.phone (
name varchar NOT NULL,
from_number varchar NOT NULL,
CONSTRAINT phone_pkey PRIMARY KEY (phone call id)

)
INHERITS (sales.phone_call, sales.phone_call_log);

Solution
Switch the order of the parents

CREATE TABLE sales.phone (

name varchar NOT NULL,

from_number varchar NOT NULL,

CONSTRAINT phone_pkey PRIMARY KEY (phone_call_id)
)

INHERITS (sales.phone_call_log, sales.phone_call);

Pythian Ir

Problems solved - pg_dump: Inheritance column order (object creation
time)

Problem
In some cases where there is inheritance the column order is dependent on object creation time
1. Parent table (columns = p1, p2)

2. Child table 1 inherited from parent with extra column (columns = p1, p2, cl_col)

3. Add column to parent table (columns = p1, p2, p3)

4. Child table 1 (columns = p1, p2, cl_col, p3)
5. Anew child table 2 is created, inheriting from parent when it already had the extra column:

(columns = p1, p2, p3, c2_col)

On recreation (when using the pg_dump generated file) get the following:

1. Parent table (columns = p1, p2, p3) 4
2. Child table 1 (columns = p1, p2, p3, c1_col)) 4
3. Child table 2 (columns = p1, p2, p3, c2_col) 4

Pythian

Problems solved - pg_dump: Inheritance column order (object creation
time)

Solution
After table is restored (no data)

parent(p1,p2,p3)v ;child1(p1,p2,p3,cl_col) X ;child2(p1,p2,p3,c2_col)v

1. Drop parent column (p3)
parent(p1,p2) X ;child1(p1,p2,c1_col) X ;child2(p1,p2,c2_col) X

2. Add parent column back again (p3) - this corrects child table 1
parent(p1,p2,p3)v ;child1(p1,p2,c1_col,p3)v ;child2(p1,p2,c2_col,p3)

3. Child table 2 is now incorrect - drop child table 2
parent(p1,p2,p3)v ;child1(p1,p2,c1_col,p3)v

4. Re-create child table 2 with original inheritance clause - this corrects child table 2

b 4

parent(p1,p2,p3)v ;child1(p1,p2,c1_col,p3)v ;child2(p1,p2,p3,c2_col)v

Pyth|an Pythian Services Inc. | www.pythian.com

r

Problems solved - postGiIS: Raster

Problem
From postGIS V3.0 the raster functions were split into their own extension

Solution
Add extension postgis_raster when postGIS is in use

Pythian

Problems solved - Postgres v14: Invalid Index (limiting the column size)

Problem
Index entries in V14 are size limited

pg_restore: from TOC entry 2418; 1259 17952 INDEX comp_idx db_owner

pg_restore: error: could not execute query: ERROR: index row size 2712 exceeds btree version 4 maximum 2704 for index "comp_idx"
DETAIL: Index row references tuple (244988,4) in relation "comp".

HINT: Values larger than 1/3 of a buffer page cannot be indexed.

Consider a function index of an MD5 hash of the value, or use full text indexing.

Command was: CREATE INDEX "comp_idx" ON "doc".'"comp" USING "btree" ("url");

Solution
Use a function index that hashes the value.
Note: also requires changes to the app to modify the SQL using this table to include the hash function

Example:
CREATE INDEX "comp_idx" ON "doc"."comp" (md5("url"));

Pythian Ir

Problems solved - Postgres v9.6: Count bug

Problem

There was a count problem when checking the parent table of an inheritance set of tables
e SELECT COUNT(#*) FROM p1; = 18138606
e SELECT * FROM p1; = 1813796

Solution
Issuing a VACUUM FULL on the table resolves the issue

Pythian

Problems solved - Python psycopg2 module: far future dates

Problem
When using python to check the data integrity found that years greater than 9999 was not handled by

the module

ValueError: year 10222 is out of range

Solution
Convert the date and timestamp columns to strings prior to comparison as the database converts far
future date correcily.

Pythian Ir

Problems solved - Validation: Floating point differences

Problem
When validating data that uses the double data type get decimal place issues and so get value
mismatches

V9.6 value : 0.981682392355061
V14 value : 0.9816823923550609

Solution

The initialization parameter extra_float_digits covers the precision of double data type output.
The default value changed in PostgreSQL v12 from 0 to 1.

Ensure that the parameter is the same on both source and target to prevent precision mismatches
during validations (it does not affect stored data)

Pythian Ir

Problems solved -

Problem

Validation: Finding functions in v9.6 vs vi4

The SQL that finds functions changed between V9.6 and V14

V9.6

SELECT
FROM
JOIN
LEFT

WHERE
AND
AND
AND

ORDER

V14

SELECT
FROM
JOIN
LEFT

WHERE
AND
AND

ORDER

Pythian

n.nspname||"'."'||p.proname AS function_name
pg-proc p

pg_namespace n ON n.oid = p.pronamespace
JOIN pg_depend d ON d.objid =
p.proisagg = false

p.oid AND d.deptype = 'e
-- not aggregate for V9.6
p.proiswindow = false -- not window function for V9.6
d.objid IS NULL -- not from extension

n.nspname IN (:include_schemas)

BY 1;

n.nspname||"'."'||p.proname AS function_name

pg-proc p

pg_namespace n ON n.oid = p.pronamespace

JOIN pg_depend d ON d.objid = p.oid AND d.deptype = 'e'
p.prokind = 'f' -- regular user-defined functions
d.objid IS NULL -- not from extensions

n.nspname IN (:include_schemas)

BY 1;

Pythian Services Inc. | www.pythian.com

Problems solved - GCP IAM: audit user column size

Problem

Many tables had audit user columns, like created by, modified_ by, deleted by, of varchar2(25),
GCP service accounts used by applications to connect to the Cloud SQL database where larger.

$ gcloud sql users list --instance=db-target2
NAME HOST TYPE PASSWORD_POLICY
app_replica BUILT_IN
dba BUILT_IN
userl@mycompany.com CLOUD_IAM_GROUP_USER
user2@mycompany .com CLOUD_IAM_GROUP_USER
support@mycompany .com CLOUD_IAM_GROUP
service-app-invoices@mycomp-prod.iam CLOUD_IAM_SERVICE_ACCOUNT
service-api-purchases@mycomp-prod.iam CLOUD_IAM_SERVICE_ACCOUNT

Solution

Modified all audit user columns length to varchar2(50).

Pythian

Lessons

learned

Pythian

Lessons learned

e POC needs to include all the complexity to proper use it for planning
o Initial project estimations based on the POC were short (not considering all issues discovered)
o How big should be a buffer for unknowns?

e Customizations were discovered as the project progressed
o Issues and data volume opened the door to new decisions - hard to anticipate
o Flexibility to implement changes with the tools used was the key
o Third party tools would have required a lot of interactions with the vendors to make the changes
needed, if possible to request them
o Several one-off requests that could not be automated

e Schemalobjects validations were moved to earlier steps of the migration (before data transfer) to catch
problems earlier and save time (specific for table column order).

e Pglogical extension is simple to use, the main migration complexity and effort is due to custom
requirements, preparation, validation steps, and automating all steps until have a repeatable process.

e Main Cloud SQL cost is CPU, so maximize Instance memory use, and minimize CPU usage.

Pythian Ir

References

e Pglogical extension - https://github.com/2ndQuadrant/pglogical

e pgcluu - https://github.com/darold/pgcluu

e YQ utility: https://github.com/mikefarah/yq

e Partitioned tables and replication: https://www.enterprisedb.com/docs/pgd/3.7/pglogical/replication-sets/

e DVT: https://qithub.com/GoogleCloudPlatform/professional-services-data-validator

e Cloud SQL limits: hitps://cloud.google.com/sal/docs/postgres/quotas

e Google DMS: https://cloud.google.com/database-migration

e Cloud SQL PSA and PSC configuration:
https://cloud.google.com/sql/docs/postgres/configure-private-services-access-and-private-service-connect

e Cloud SQL users: hitps://cloud.google.com/sal/docs/postgres/users

Pythlan Pythian Services Inc. | www.pythian.com r

https://github.com/2ndQuadrant/pglogical
https://github.com/darold/pgcluu
https://github.com/mikefarah/yq
https://www.enterprisedb.com/docs/pgd/3.7/pglogical/replication-sets/
https://github.com/GoogleCloudPlatform/professional-services-data-validator
https://cloud.google.com/sql/docs/postgres/quotas
https://cloud.google.com/database-migration
https://cloud.google.com/sql/docs/postgres/configure-private-services-access-and-private-service-connect
https://cloud.google.com/sql/docs/postgres/users

Questions?

calero@pythian.com davies@pythian.com
https:/www.linkedin.com/in/ncalero https:/www.linkedin.com/in/lukedavies/
@ncalerouy

Pyth|an Pythian Services Inc. | www.pythian.com

Agenda

Pythian

Project description
Migration options
How we did it
Problems solved
Lessons learned

Appendix - for reference
Capacity planning
Automation config files
pglogical publisher creation
Schema and Data validation

Pythian Services Inc. | www.pythian.com

Appendix - Capacity planning

mydb=# \COPY connection_stats FROM '/tmp/all_conn_state.txt'
COPY 816314

mydb=# \COPY db_stats FROM '/tmp/all db_stats.txt' DELIMITER
COPY 13990

mydb=# \i aas.sql

host | snaps | cnt_sum | cnt_max | cnt_avg | act_max | act
——————— i e S e e St
insl1 | 83 | 829 | 2 | 1.032 | 4 |
inst2 | 2984 | 3953 | 5| 1.325 | 8 |
Inst3 | 5264 | 17539 | 12 | 3.332 | 55 |
inst4 | 1198 | 1254 | 3| 1.047 | 9 |
inst5 | 5274 | 12056 | 6 | 2.286 | 29 |
Inst6 | 3898 | 5088 | 5 | 1.305 | 32 |

DELIMITER ',' CSV HEADER;

', ' CSV HEADER;

avg | max_max_in_db

e e
127 | 4
366 | 5
256 | 28
410 | 9
393 | 21
144 | 31

Pythian

Capacity planning

mydb=# \COPY connection_stats FROM '/tmp/all_conn_state.txt' DELIMITER ',' CSV HEADER;
COPY 816314

mydb=# \COPY db_stats FROM '/tmp/all db_stats.txf # cat aas.sql

COPY 13990
select host,
mydb=# \i aas.sql count(1) snaps,
host | snaps | cnt_sum | cnt_max | cnt_avg | sum(cnt) cnt_sum,
_______ Mmoo e e e e e e e max(cnt) cnt_max,
ins1 | 8e3 | 829 | 2 | 1.032 | round(avg(cnt),3) cnt_avg,
inst2 | 2984 | 3953 | 5 | 1.325 | max(active total) active_max,
Inst3 | 5264 | 17539 | 12 | 3.332 | round(avg(active total),3) active_avg,
inst4 | 1198 | 1254 | 3 | 1.047 | max(max_in_db) max_max_in_db
inst5 | 5274 | 12056 | 6 | 2.286 | 4 from (
Inst6 | 3898 | 5088 | 5 | 1.305 | select host, snap, sum(count) active total,

count(distinct datname) dbs,
max(count) max_in_db,
count(1l) cnt
from connection_stats
where state='active' and datname!='postgres'
group by host, snap
) group by host;

Pythian

Capacity planning

mydb=# create view db_stats_snap_v as

select host, datname, snap, numbackends,
xact_commit, xact_commit - lag(xact_commit
xact_rollback, xact_rollback lag(xact_rollback
blks_read, blks_ read - lag(blks_read
blks_hit, blks_hit - lag(blks_hit
tup_returned, tup_returned - lag(tup_returned
tup_fetched, tup_fetched - lag(tup_fetched
tup_inserted, tup_inserted -
tup_updated, tup_updated -
tup_deleted, tup_deleted -

lag(tup_updated
lag(tup_deleted

conflicts, conflicts - lag(conflicts
temp_files, temp_files - lag(temp_files
temp_bytes, temp_bytes - lag(temp_bytes
deadlocks, deadlocks - lag(deadlocks

)
)
)
)
)
)
lag(tup_inserted)
)
)
)
)
)
)

from db_stats
where datname not in ('template®@’', 'templatel’)
order by host, datname, snap;

OVER
OVER
OVER
OVER
OVER
OVER
OVER
OVER
OVER
OVER
OVER
OVER
OVER

(partition
(partition
(partition
(partition
(partition
(partition
(partition
(partition
(partition
(partition
(partition
(partition
(partition

host,
host,
host,
host,
host,
host,
host,
host,
host,
host,
host,
host,
host,

datname
datname
datname
datname
datname
datname
datname
datname
datname
datname
datname
datname
datname

ORDER
ORDER
ORDER
ORDER
ORDER
ORDER
ORDER
ORDER
ORDER
ORDER
ORDER
ORDER
ORDER

BY
BY
BY
BY
BY
BY
BY
BY
BY
BY
BY
BY
BY

snap)
snap)
snap)
snap)
snap)
snap)
snap)
snap)
snap)
snap)
snap)
snap)
snap)

mydb=# \COPY (select * from db_stats_snap_v) TO '/tmp/db_stats snap_v.csv' DELIMITER ',' CSV HEADER;

COPY 12742

xact_commit_dt,
xact_rollback_dt,
blks_read_dt,
blks_hit_dt,
tup_returned_dt,
tup_fetched_dt,
tup_inserted_dt,
tup_updated_dt,
tup_deleted_dt,
conflicts_dt,
temp_files_dt,
temp_bytes dt,
deadlocks_dt

Pythian

Capacity planning - Sample graphs

? Suggested v
DB Stats Map - Block hits/h
1.00E+9 Rows Add
snap X
Order Sort by
Ascen.. - snap -
[] showtotals
7.50E+8
Columns Add
: datname X
Order Sort by
500E+8 Ascen.. ¥ datna_. «
[1 showtotals
» Filter by condition
Vi Filter by values
2.50E+8 Select all 8 - Clear
=
Fi <
0
2025-03-11 0:00 2025-03-12 0:00 2025-03-13 0:00 2025-03-14 0:00 db_
snap db-

Pyth|an Pythian Services Inc. | www.pythian.com r

Appendix - Migration automation - Config: migrate_db.yaml

Database Name
s Target Instance

Current Stage

e Completed flag
e Schema Name

: db-target-2

< \igration Method

Pythian

Migration automation - Config: migrate_env.yaml

IEETE ¢ Source DBA user
e { 4 Parallel migrations
. a

: db_owner
app_replica
: prod.mydb.com

 {aEE—— RUn stage

"Create owner db_builder"

"<binDir>/create_owner.sh -1 <logFile> -h <target> -U <superUser> <ownerUser>" _Command
"<binDir>/drop role.sh -h <target> -U <superUser> <ownerUser>"

: all
: 10
Replacement Variable
: 84
"Load Database Data"
"<binDir>/run_pgrestore.sh -1 <logFile> -h <server> -U <superUser> -d <database> -a <target>"

:_pgdump —Migration Method

: 90

"Install pglogical on target"

"<binDir>/install pglogical.sh -1 <logFile> -h <target> -U <superUser> -d <database> -r <replicaUser> -t"
: pglogical

Pythian Ir

Migration automation - Reading / Writing config

e Useyq

o yq -r '.servers[] | select(.name == "db") | .databases[] | select(.name == "location") | .target'

o yq -iy '(.servers[] | select(.name == "db") | .databases[] | select(.name == "location").stage) = 10'
e Use flock

o flock db_config.yaml <yq command>

e Parallel running

o RunMigrate <parameterl1> <parameter2> &
o wait -n

Pythian

Appendix - Migration automation - pglogical publisher creation

Pyt

e Max of two publishers per database - one for insert-only schemas, other for the rest
e Code generated by the publisher creation step - easy to review generated SQL in case of issues

$ cat gensql/serveril_dbl_pub.sql
/* ## Create publishers for pglogical replication on source host serverl for database dbl ## */
/* #i## CRUD schemas - no log #i# */
do $%
declare
ret oid;
begin
if not exists (SELECT set_id FROM pglogical.replication_set WHERE set_name = 'dbl_pub') then
ret := pglogical.create_replication_set('dbl _pub');
RAISE NOTICE 'Replication set porch_pub created with OID %', ret;
else
RAISE NOTICE 'Replication set porch_pub already created - skipping creation’;
end if;
end $$;
/* schemal schema */
GRANT USAGE ON SCHEMA schemal TO app_replica;
GRANT SELECT,INSERT,UPDATE,DELETE ON ALL TABLES IN SCHEMA schemal TO app_replica;
GRANT USAGE,SELECT ON ALL SEQUENCES IN SCHEMA schemal TO app_replica;
SELECT pglogical.replication_set_add_all_tables('dbl_pub', ARRAY['schemal']);
select pglogical.replication_set_add_all_sequences('dbl_pub', ARRAY['schemal']);
/* schema2 schema */

Migration automation - pglogical publisher creation

Pyt

e Maxoft
e Code ge

$ cat gensql/se
/* ## Create p

/* ### CRUD
do $$
declare
ret oid;
begin
if not exists (
ret := pglog
RAISE NOTICE
else
RAISE NOTICE
end if;
end $%;

/* schemal sche
GRANT USAGE ON S
GRANT SELECT, INS
GRANT USAGE, SELE
SELECT pglogica
select pglogica
/* schema2 sche

hers per database - one for insert-on hemas. other fo
/* #i## Insert only schemas #i# */
do $%
declare
ret oid;
begin
if not exists (SELECT set_id FROM pglogical.replication_set WHERE set_name =
ret := pglogical.create_replication_set(set _name := 'dbl_log pub’,
replicate_update:= false, replicate_delete:= false);
RAISE NOTICE 'Replication set porch_log _pub created with OID %', ret;
else
RAISE NOTICE 'Replication set porch_log_pub already created - skipping creation’;
end if;
end $%;
/* schemal_log schema */
GRANT USAGE ON SCHEMA schemal_log TO app_replica;
GRANT SELECT,INSERT,UPDATE,DELETE ON ALL TABLES IN SCHEMA schemal_log TO app_replica;
GRANT USAGE,SELECT ON ALL SEQUENCES IN SCHEMA schemal_log TO app_replica;
SELECT pglogical.replication_set_add_all_tables('dbl_log pub', ARRAY['schemal_log']);
select pglogical.replication_set_add_all_sequences('dbl_log pub', ARRAY['schemal_log']);

/* schema2_log schema */

'dbl_log pub') then

Appendix - Migration automation - Schema and Data validation

e Initial version using Google Data Validation Tool (DVT)

@)

o O O O

https://qithub.com/GoogleCloudPlatform/professional-services-data-validator

Python code

Several executions per schema - a few seconds overhead, big total for large clusters
Errors casting column data types - fixed a few, but new DBs raised new errors
Requires custom config per source and target DB

e Final version using DVT (schema validation) and custom python script (data validation)

@)

@)

Pythian

Schema validations implemented through external SQLs and DVT
m Configurable and easy to deal with catalog version changes (i.e.: find all user created
functions)
Data validations using hash over all table columns
m Similar column casting errors as in DVT. Implemented all fixes in a single place
m Special treatment for large tables
e Limit to a few thousands sample rows (random PK)
e Using TABLESAMPLE based on estimated table size

https://github.com/GoogleCloudPlatform/professional-services-data-validator

Migration automation - Schema validation

(venv) ncalero@test:/migra/bin$ python3 schema_compare.py source-inst db-name target-inst
Running validations for database: db-name on host source-inst

Object Count Summary ...

Schemas to validate: 'sales', 'customers', 'public'

INFO - /mnt/dump/dvt/venv/bin/data-validation validate custom-query row -sc psql_test_db-name_source -tc
psql_test_db-name_target -sqf="/validation/modified_sql/source-inst/objectsummary_source_db-name.sql"
-tqf="/validation/modified_sql/source-inst/objectsummary_target_db-name.sql" --primary-keys="coll" --concat="'*' -fmt 'csv’

. Warning: Some rows failed to validate
Validation Results:

source target validation_status
Schema count — 5 Schema count — 5 success
Extension count — 6 Extension count — 6 success
View count — 1 View count — 1 success
Table count — 6 Table count — 7 fail
Materialized View count — © Materialized View count — @ success
Index count — 29 1Index count — 29 success
Partition count — 7 Partition count — 6 fail
Trigger count — 18 Trigger count — 18 success
Sequence count — 8 Sequence count — 8 success
Primary Key count — 13 Primary Key count — 13 success
Foreign Key count — 5 Foreign Key count — 5 success
Unique Constraint count — 7 Unique Constraint count — 7 success
Check Constraint count — 1 Check Constraint count — 1 success
Userdefined Function count — 6 Userdefined Function count — 6 success

Migration automation - Data validation

Code to cast column data types:

def _process_value(self, col, value):

if isinstance(value, (datetime, time.struct_time, dt_time)):
return value.isoformat()

elif isinstance(value, (DateTimeTZRange, Decimal, NumericRange, date, timedelta, list, DateRange)):
return str(value)

elif isinstance(value, memoryview):
return base64.b64encode(value.tobytes()).decode('utf-8")

else:
return value

Pythian Ir

Migration automation - Data validation

Code to get random PK for large tables:

cursor = conn.cursor()

pk_column_str = ", ".join(pk_columns)
where_clause = " AND ".join([f"{col} IS NOT NULL" for col in pk_columns])
Sql = _Fllllll

SELECT {pk_column_str}
FROM {schema}.{table} TABLESAMPLE SYSTEM(%s)
WHERE {where_clause}
LIMIT %s;
fetch_limit = max(2 * self.sample_size, 1000)
self. execute_sql(cursor, sql, conn, (sample_ perc,fetch_limit,))
if len(pk_columns) == 1:
all pks = [row[@] for row in cursor.fetchall()]
else:
all pks = [tuple(row) for row in cursor.fetchall()]

cursor.close()
return random.sample(all pks, min(len(all _pks), self.sample_size))

Py,

def _get_random_primary_keys(self, conn, schema, table, pk _columns, sample_perc):

Migration automation - Data validation

Code to get random PK for large tables:

def _get_random_primary_keys(self, conn, schema, table, pk _columns, sample_perc):

estd rows = self. get table_rows_est(source_conn, schema, table)

safety factor = Decimal(3)

v_sample_perc (Decimal(self.sample _size) / max(estd _rows,1)) * 100 * safety factor
v_sample perc = max(Decimal('0.00001'), min(Decimal('100.0'), v_sample_perc))

logging.info(f".... getting random PKs in source (rows={estd rows} sample={v_sample perc:.3f}%)")
source_pks = self._get_random_primary_keys(source_conn, schema, table, pk _columns, v_sample perc)
if not source_pks:

logging.info(f"No data found in {schema}.{table} or sample size is zero.")

status = "OK (No Data)"

return status, time.time() - start_time

cursor.close()
return random.sample(all pks, min(len(all _pks), self.sample_size))

